Orodje Graph

Orodje Graph

Avtor: Mojca Kerin

Kratek opis Grapha

Orodje Graph je prosto dostopno, torej si ga lahko brezplačno prenesemo na računalnik.

Orodje je dosegljivo na tej povezavi.

Z Graph-om rišemo funkcije v koordinatni sistem. Narišemo lahko standardne funkcije, funkcije v parametrični obliki, v polarni obliki, tangente na funkcijo v dani točki, nize točk, enačbe in relacije. Mogoče je tudi narisati graf iz podanih točk.

(MojcaKerin_osnovnoOkno2.png)

Ko program zaženemo se nam odpre glavno okno. Na desni strani imamo koordinatni sistem, ki služi za prikaz vnešenih podatkov (funkcij). S pomočjo gumbov v orodni vrstici lahko skozi različne pogovorne okne vnašamo funkcije, jih urejamo, brišemo... Na levi strani okna pa je seznam funkcij, tangent, nizi točk, dodana senčenja, relacije... Vrstica na dnu glavnega okna pa prikazuje koordinate kje se trenutno nahaja kruzer (miška), če pa se postavimo na kakšen element oziroma na kakšen ukaz se izpiše besedilo, ki pove kaj pomeni nek ukaz, kako vnesemo podatke...

Nove elemente v Gpraph-u dodajamo tako,da v ukazni vrstici izberemo Funkcija in potem tist ukaz, ki ga želimo.

V orodni vrstici lahko izbremo tudi možnost Računaj. Tu najdemo možnosti za računanje z funkcijami. Torej računanje vrednosti funkcije na nekem intervalu ali v točki.

Orodna vrstica

Orodno vrstico si lahko prilagodimo, kot nam najbolj ustreza. Kako to storimo, je opisano na filmčku spodaj.

Če želimo orodno vrstico povrniti v prvotno stanje kliknemo z desno miškino tipko nanjo in izberemo Ponastavi.

Koordinatne osi

Tudi koordinatne osi lahko prilagajamo, kot nam najbolj ustrezajo. V orodni vrstici izbremo Uredi nato pa Osi.... Ali pa enostavno kliknemo na gumb:

(MojcaKerin_osi4.png)

Odpre se nam pogovorno okno s štirimi zavihki. Prvi zavihek je namenjen urejanju x-osi (oziroma abscisne osi), drugi pa je čisto podoben prvemu, le da je namenjen za y-os (oziroma ordinatno os).

(MojcaKerin_osi1.png)
Pogovorno okno za nastavitev osi
  • Minimum in Maksimum določata na katerem intervalu se naj razteza abscisna os.
  • Če pred možnostjo Oznaka stoji kljukica, se bo besedilo zapisano v polju izpisalo ob abscisni osi.
  • Določimo lahko tudi, kje se naj abscisna in ordinatna os sekata. (To pride še posebno prav v primerih, če je graf izrisan daleč od izhodišča (če privzamemo, da je izhodišče v točki O=(0,0)).
  • Merilo oznak določa na kakšni razdalji naj bodo posatavljena merila (takoimenovae kljukice). Če izberemo možnost Samodejno se bodo ta merila spreminjala, če bomo spreminjali velikost grafa oziroma slike. Imamo pa tudi možnost, da se ta merila oziroma kljukice ne vidijo.
  • Lahko omogočimo, da se vidi mreža, da si lažje predstavljamo kje poteka graf.
  • Poleg vsega tega, pa lahko uporabimo še vrsto merila. Se pravi, da je lahko tudi Logaritmetično merilo. Poleg tega pa lahko izbiramo še med možnostima: Prikaži števila in Prikaži kot večkratnike pi (slednje pride posebej prav, ko se ukvarjamo s trigonomotričnimi funkcijami).

V tretjem zavihku (tj. Nastavitve) lako napišemo, kaj se naj izpiše nad koordinatnimi osmi, služi kot naslov grafa. Še posebej prav pride, takrat ko sliko izvozimo iz Graph-a in nam ni potrebno dodatno urejati slike grafa.

  • Določimo lahko ali naj bo vidna legenda ali ne, ter kje naj bo postavljena na zaslonu.
  • Če obkljukamo možnost Računaj s kompleksnimi števili se bodo uporabljala tudi kompleksna števila pri risanju grafov.
  • Imamo tri možne sloge osi, ter ali naj bodo koti zapisani v radianih ali v stopinjah.

Pod zavihkom Pisava in barva, lako izbiramo barvo ozadja, barvo osi ter barvo mreže. Poleg tega pa tudi pisavo oznak, števil in pisava legende.

Če obkljukamo možnost Shrani kot privzeto, se bodo vse spremembe, ki smo jih naredili, shranile, oziroma se ne bodo "izgubile", ko bomo Graph zaprli.

Vnos funkcije

Sedaj, ko poznamo orodje Graph že malo bolj, se lahko lotimo ustvarjanja v njem. Spodaj je dodan filmček, ki s pomočjo opisov pirkazuje kako vstavimo novo funkcijo, kako jo spremenimo,... Ostale podrobnosti si lahko preberete, če kliknete na 'Podrobnosti o vnosu funkcije' na dnu okna.

Podrobnosti o vnosu funkcije

Podrobnosti o vnosu funkcije

Nove elemente v Graph-u dodajamo tako, da v ukazni vrstici izberemo Funkcija in nato Vstavi funkcijo ali pa kliknemo na gumb v orodni vrstici:

(MojcaKerin_osi5.png)

okno se odpre, tudi če pritisnemo tipko INS. Odpre se nam naslednje pogovorno okno:

(MojcaKerin_VstavljanjeFunkcije.png)
Pogovorno okno za vnos funkcije

Kot vidimo na sliki zgoraj imamo pri vnosu funkcije veliko možnosti. Če katerega od okenčkov dodatno ne izpolnimo, se bodo vzele privzete nastavitve, in se ne bo izpisalo nič.

  • Tip funkcije: tu izberemo kakšnega tipa je funkcija, ki jo želimo vnesti. Izberemo lahko:

    • standardno funkcijo (y=f(x)),
    • parametrično funkcijo (x(t), y(t)) ali
    • funkcijo v polarni obliki (r=(f(t)).
  • V okence Enačba funkcije vnesemo željeno funkcijo.
  • Določimo Interval na katerem naj bo funkcija narisana. Ker je graf narisan tako, da določamo x-koordinate in nato izračunamo pripadajočo y-koordinato, izberemo še Korak. Na primer, da želimo narisati funkcijo f(x)=x^2 na intervalu [-10,10] in izberemo korak 5, bomo dobili 'grd' graf. To pomeni, da ne bo lep okrogel, ampak bo oster, saj je f(x) izračunan le v petih vrednostih x-a, med temi vrednostmi pa so potegnjene daljice. Zato moramo napisati veliko število ali pa pustimo prazno polje, tedaj bo Graph izbral takšen korak, da bo graf lep, to pomeni da bo zbranih dovolj veliko vrednosti x-a, da bo graf lepo razločen.
  • Mejitvene točke so točke, ki se bodo izrisale na koncu intervala, oz na robu koordinatnega sistema, če ne podamo intervala. Je zelo praktična možnost, kadar rišemo daljice, vektorje,...
  • Če bomo podali Opis funkcije se bo zapisalo to Besedilo v legendi.
  • Da se bodo grafi, ki jih rišemo ločili med seboj uporabio Lastnosti grafa. Spreminjamo jim lahko barvo, slog črte, slog risanja ter kakšna naj bo širina (oziroma debelina) črte.

Vneseni podatek lahko spremenimo tako, da kliknemo na enačbo funkcije (oz. na opis funkcije, če smo ga dodali) ter v orodni vrstici izberemo Funkcija in nato Uredi. Do tega pogovornega okna pridemo tudi tako, da z desno tipko miške kliknemo na enačbo funkcije, ter v seznamu, ki se odpre izberemo Uredi. Če dvakrat kliknemo na podatek se prav tako odpre pogovorno okno. To orodje na žalost ne omogoča klik na graf funkcije, da bi jo urejali.

Ker lahko v enem oknu narišemo poljubno mnogo grfov funkcij in včasih ne potrebujemo vseh, pa jih ne želimo zbrisati, lahko uporabimo možnost, da objekt skrijemo. Torej ob enačbi funkcije na levi strani okna so narisane kljukice. Če nek objekt odkljukamo (mu odstranimo kljukico), ta ne bo več viden na zaslonu. Če želimo, da je objekt ponovno viden obkljukamo okenček ob enačbi.

Spremenljivke:

  • x - neodvisna spremenljivka
  • t - neodvisna spremenljivka, ki se uporablja v parametričnih in polarnih funkcijah

Konstante:

  • e - Eulerjeva konstanta e=2.718281828459...
  • pi=3.141592653589...

Operatorji:

  • seštevanje +
  • odštevanje -
  • množenje *
  • deljene /
  • potenciranje ^
  • ...

Funkcije:

  • sinus - sin
  • kosinus - cos
  • tangens - tan
  • ...

Vnos tangente ali normale

Kako vnesemo tangento ali normalo je opisano na filmčku spodaj. Za več podrobnosti kliknite na 'Podrobnosti o vnostu tangente ali normale'.

Podrobnosti o vnosu tangente ali normale

Podrobnosti o vnosu tangente ali normale

Pogovorno okno za vnos tangente ali normale je eno, saj za obe veljajo enaki pogoji, da jih narišemo (saj, če narišemo obe, vidimo, da sta pravokotni). Da vstavimo tangento oziroma normalo, moramo v orodni vrstici izbrati možnost Funkcija nato pa Vstavi tangento/normalo... in odpre se pogovorno okno. Do tega pogovornega okna lahko pridemo tudi tako, da pritisnemo tipko F2, ali pa v orodni vrstici kliknemo na gumb:

(MojcaKerin_osi6.png)

Pogovorno okno izgleda tako kot prikazuje spodnja slika.

(MojcaKerin_VstavljanjeTangente1.png)
Pogovorno okno za vstavljanje tangente ali normale
  • V prvo polje vnesemo x-koordinato točke, v kateri želimo imeti narisano tangento ali normalo.
  • Tangenta ali normala je lahko vidna tudi v legendi, zato lahko v drugo polje vnesemo Opis tangente ali normale.
  • Prav tako kot pri vnosu funkcije, lahko tudi pri vnosu tangente ali normle izbiramo kakšen naj bo Interval na katerem se bo izrisala tangenta ali normala. Če intervala ne določimo bo tanagenta ali normala narisana skozi celo okno (tudi, če sliko povečamo, bo še vedno narisana skozi celo okno).
  • Poljubno lahko določimo še Mejitveni točki. Polji lahko pustimo tudi prazni, tedaj se ne bosta izrisali mejitveni točki.
  • Možnosti Lastnosti grafa so iste kot pri vnosu funkcije. Torej Slog črte, Barva in Širina.
  • Ker imamo možnost, da v dani točki narišemo tangento ali normalo imamo še ti dve možnosti na voljo (označimo željeno).

Vnos odvoda

Odvod lahko vnesemo le, če imamo že podano neko funkcijo. Torej s pomočjo pogovornega okna za vnos odvoda dobimo novo funkcijo in nov graf. Kako to storimo prikazuje spodnji filmček.

Računanje vrednosti - dolžina poti (dolžina loka)

V Graphu lahko izračunamo tudi vrednosti kot so: dolžina poti (dložina loka), ploščina in ovrednotenje funkcije pri neki vrednosti x.

Izbiramo lahko med: Dolžina poti (dolžina loka), Ploščina, Ovrednoti,... Katerega koli izbremo, se bo odprlo novo pogovorno okence, ali pa je to okence vpreto na levi strani pod seznamom funkcij.

  • Pogovorno okno za izračun dolžine poti dobimo tako, da v orodni vrstici kliknemo na Računaj ter izberemo Dolžina poti(dolžina loka), lahko pa tudi v orodni vrstici kliknemo na:

    (MojcaKerin_izracunDolzine1.png)

Pogovrono okno izgleda tako:

(MojcaKerin_izracunDolzine2.png)

Interval za katerega želimo vedeti dolžino, lahko izberemo tako, da označimo z miško del grafa, vendar to ni zelo točno, saj je zelo malo verjetno, da bomo izbrali točno določen interval, na katerega nas zanima dolžina poti (dolžina loka). Bolje je, da v pogovorno okno vnesemo interval Od, Do. V vsakem primeru se v polju Dolžina izpiše vrednost.

Računanje vrednosti - ploščina in ovrednotenje funkcije

  • Pogovorno okno za izrčun plošline dobimo tako, da v orodni vrstici kliknemo na Računa ter nato Ploščina, lahko pa tudi v orodni vrstici kliknemo na:

    (MojcaKerin_izracunPloscine1.png)

In dobimo naseldnje pogovorno okno

(MojcaKerin_izracunPloscine2.png)

Podobno kot pri izbiri intervala pri izračunu dolžine poti, lahko tudi tu izberemo interval, tako da ga označimo na grafu, ali pa vnesemo interval na katerm naj bo izračunana ploščina. Gpahp izračuna ploščino lika, ki je omejen z grafom funkcije in abscisno osjo. Vrednost, ki jo dobimo je prav takšna, kot da bi izračunali določeni integral te funkcije na istem intervalu. V polju Ploščina se bo izpisala vrednost plošline.

  • Pogovorno okno za ovrednotenje funkcije dobimo tako, da v orodni vrstici kliknemo na Računa, ter nato Ovrednoti, lahko pritisnemo tudi CTRL+E, ali pa v orodni vrstici kliknemo na nasednji gumb:

    (MojcaKerin_izracun1.png)

    Pogovorno okno, prikazano na sliki spodaj je primer, ko želimo ovrednotiti neko standardno funkcijo. Ta okna se med seboj malo razlikujejo, če izberemo parametrično ali polarno funkcijo.

    (MojcaKerin_izracun2.png)

V prvo polje vnesemo vrednost abscise točke na funkciji. V polju f(x) se bo izpisala vrednost funkcije pri dani abscisi. V polju f'(x) se bo izpisala vrednost prvega odvoda v tej točki, v polju f' '(x) pa vrednost drugega odvoda.

0%
0%