Naloga 2

Naloga 2

Avtor: Janja Peterlin

Besedilo naloge

The palindromic number 595 is interesting because it can be written as the sum of consecutive squares: 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2. There are exactly eleven palindromes below one-thousand that can be written as consecutive square sums, and the sum of these palindromes is 4164. Note that 1 = 0^2 + 1^2 has not been included as this problem is concerned with the squares of positive integers. Find the sum of all the numbers less than 10^8 that are both palindromic and can be written as the sum of consecutive squares.

Opis problema in ideja rešitve

Poiskati moramo vsoto vseh palindromnih števil, ki jih lahko zapišemo kot vsoto kvadratov in koliko je vseh palindromnih števil. Najprej preverimo, če je število palindrom. Nato poiščemo vsa palindromna števila do 10^8. Dovolj je, da pogledamo vsa števila samo do korena števila 10^8, ker je 10^4 krat 10^4 ravno 10^8.

Razlaga algoritma

(slika1.jpg)

Testni program

(SlikaTestni1.jpg)
  • (SlikaResitevTestni1.jpg)
(SlikaTestni2.jpg)
  • (SlikaResitevTestni2.jpg)
0%
0%